Driving forces and structural determinants of steric zipper peptide oligomer formation elucidated by atomistic simulations.

نویسندگان

  • Dirk Matthes
  • Vytautas Gapsys
  • Bert L de Groot
چکیده

Understanding the structural and energetic requirements of non-fibrillar oligomer formation harbors the potential to decipher an important yet still elusive part of amyloidogenic peptide and protein aggregation. Low-molecular-weight oligomers are described to be transient and polymorphic intermediates in the nucleated self-assembly process to highly ordered amyloid fibers and were additionally found to exhibit a profound cytotoxicity. However, detailed structural information on the oligomeric species involved in the nucleation cannot be readily inferred from experiments. Here, we study the spontaneous assembly of steric zipper peptides from the tau protein, insulin and α-synuclein with atomistic molecular dynamics simulations on the microsecond timescale. Detailed analysis of the forces driving the oligomerization reveals a common two-step process akin to a general condensation-ordering mechanism and thus provides a rational understanding of the molecular basis of peptide self-assembly. Our results suggest that the initial formation of partially ordered peptide oligomers is governed by the solvation free energy, whereas the dynamical ordering and emergence of β-sheets are mainly driven by optimized inter-peptide interactions in the collapsed state. A novel mapping technique based on collective coordinates is employed to highlight similarities and differences in the conformational ensemble of small oligomer structures. Elucidating the dynamical and polymorphic β-sheet oligomer conformations at atomistic detail furthermore suggests complementary sheet packing characteristics similar to steric zipper structures, but with a larger heterogeneity in the strand alignment pattern and sheet-to-sheet arrangements compared to the cross-β motif found in the fibrillar or crystalline states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping the Conformational Dynamics and Pathways of Spontaneous Steric Zipper Peptide Oligomerization

The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligom...

متن کامل

Thermodynamic Selection of Steric Zipper Patterns in the Amyloid Cross-β Spine

At the core of amyloid fibrils is the cross-beta spine, a long tape of beta-sheets formed by the constituent proteins. Recent high-resolution x-ray studies show that the unit of this filamentous structure is a beta-sheet bilayer with side chains within the bilayer forming a tightly interdigitating "steric zipper" interface. However, for a given peptide, different bilayer patterns are possible, ...

متن کامل

Resolving the Atomistic Modes of Anle138b Inhibitory Action on Peptide Oligomer Formation.

The diphenyl-pyrazole compound anle138b is a known inhibitor of oligomeric aggregate formation in vitro and in vivo. Therefore, anle138b is considered a promising drug candidate to beneficially interfere with neurodegenerative processes causing devastating pathologies in humans. The atomistic details of the aggregation inhibition mechanism, however, are to date unknown since the ensemble of sma...

متن کامل

Factors That Drive Peptide Assembly from Native to Amyloid Structures: Experimental and Theoretical Analysis of [Leu-5]-Enkephalin Mutants

Five different mutants of [Leu-5] Enkephalin YGGFL peptide have been investigated for fibril formation propensities. The early oligomer structures have been probed with a combination of ion-mobility mass spectrometry and computational modeling. The two peptides YVIFL and YVVFL form oligomers and amyloid-like fibrils. YVVFV shows an early stage oligomer distribution similar to those of the previ...

متن کامل

Atomistic Simulations to Predict Favored Glass-Formation Composition and Ion-Beam-Mixing of Nano-Multiple-Metal-Layers to Produce Ternary Amorphous Films

Based on the framework of long-range empirical formulas, the interatomic potentials were constructed for the Ni-Nb-Mo (fcc-bcc-bcc) and Ni-Zr-Mo (fcc-hcp-bcc) ternary metal systems. Applying the constructed potentials, atomistic simulations were performed to predict the energetically favored glass formation regions (GFRs) in the respective composition triangles of the systems. In addition, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 421 2-3  شماره 

صفحات  -

تاریخ انتشار 2012